flowchart LR
A[Question] --> B[Dimensional Analysis]
B -->|Valid?| C[Ratio Method]
C -->|Compare| D[Unit Conversion]
D -->|Calculate| E[OOM Check]
E -->|Sensible?| F[Answer]
Mastering Astrophysical Reasoning
January 22, 2026
By the end of this lecture, you will be able to:
Every physics mistake leaves a fingerprint.
A student calculates the orbital period of Mars using:
\[P = \frac{r^2}{GM} \rightarrow P = 3.5 \times 10^{14} \text{ ... something.}\]
Before you calculate anything:
Can you tell this equation is wrong?
Check the Dimensions: period \(P\) should be time: \([T]\).
\[\frac{r^2}{GM} = \frac{[L^2]}{[L^3 T^{-2}]} = [L^{-1} T^2]\]
That’s not time. It’s “time squared per length” — its physically meaningless.
The equation is guaranteed wrong. No calculator needed.
Which formula(s) could represent an orbital period \(P\)?
Select all with dimensions of \([T]\) (time).
| Formula | |
|---|---|
| a) | \(P \propto \frac{r^2}{GM}\) |
| b) | \(P \propto \sqrt{\frac{r^3}{GM}}\) |
| c) | \(P \propto \frac{r}{\sqrt{GM}}\) |
| d) | \(P \propto \sqrt{\frac{GM}{r^3}}\) |
Given
\([G] = M^{-1}L^3T^{-2}\), \(\;[r]=L\), \(\;[M]=M\)
Work rule: Track \([L],[M],[T]\) only — no numbers.
We want \([P]=[T]\). Use \([GM]=[L^3T^{-2}]\) because \([G][M]=[M^{-1}L^3T^{-2}][M]=[L^3T^{-2}]\).
Only option 2 has dimensions of time.
Using only dimensional analysis, you will:
No calculus. No memorizing formulas. Just dimensional logic.
You might be thinking: “I’m not a math person.”
Here’s the truth:
This isn’t talent. It’s a skill you’re about to learn.
Stars appear as mere points. Is that faint red glow a tiny nearby dwarf or a massive distant supergiant?
We can’t visit them. We can’t weigh them directly.
So how do we know anything about them?
We need a toolkit that extracts physics from limited data.
Four methods that turn “points of light” into physics:
These aren’t math drills—they’re inference tools.
Math as a telescope 🔭
Astronomy is the art of inferring physical reality from limited measurements.
Today’s superpower: units + dimensions catch mistakes before they become beliefs.
We will use a few equations before we derive them
Later this semester (and in your physics sequence) you’ll learn where they come from.
Rules for today
The decoding ritual (we’ll use this all semester)
For any equation, ask:
Your survival kit 🧰
Tool 1: Dimensional Analysis
The “smoke detector” for physics
Every physical quantity in this course is built from three ingredients:
| Dimension | Symbol | Example (CGS) |
|---|---|---|
| Length | \([L]\) | cm |
| Mass | \([M]\) | g |
| Time | \([T]\) | s |
Units are conventions (cm vs AU).
Dimensions are invariant physical DNA.
| Quantity | Dimensions | CGS Unit |
|---|---|---|
| Velocity | \([LT^{-1}]\) | cm/s |
| Acceleration | \([LT^{-2}]\) | cm/s\(^2\) |
| Force | \([MLT^{-2}]\) | dyne (g cm/s\(^2\)) |
| Energy | \([ML^2T^{-2}]\) | erg (g cm\(^2\)/s\(^2\)) |
| Pressure | \([ML^{-1}T^{-2}]\) | dyne/cm\(^2\) |
If you calculate a star’s mass and your answer has dimensions of time…
The physics is wrong.
You don’t need a calculator to know something’s broken.
Newton’s law of gravity: \[F = \frac{GMm}{r^2}\]
What’s in this equation?

Before I show you: What dimensions must \(G\) have?
A. \([MLT^{-2}]\) B. \([M^{-1}L^3T^{-2}]\) C. \([L^3T^{-2}]\) D. \([MT^{-2}]\)
Newton’s law of gravity: \[F = \frac{GMm}{r^2}\]
Known dimensions:
Rearrange: \(G = \dfrac{F r^2}{M m}\)
\[ \begin{aligned} [G] &= \frac{[F][r]^2}{[M][m]} = \frac{(MLT^{-2})(L^2)}{M \cdot M} \\[0.5em] &= \frac{ML^3T^{-2}}{M^2} = M^{-1}L^3T^{-2} \\[0.5em] &\rightarrow \boxed{[G]= M^{-1}L^3T^{-2}} \end{aligned} \]
Kepler’s Third Law gives us: \[P \propto \sqrt{\frac{r^3}{GM}}\]
Question: Verify the dimensions work out to time \([T]\).
We just verified Kepler’s Law.
But can we derive it from first principles?
Yes. Using only dimensional analysis.
We want a formula for orbital period \(P\): “time for one orbit.”
Ingredients (allowed today):
Goal: \[[P] = [T]\]
Equation meaning (gloss)
Assume: \(P \propto r^{a}M^{b}G^{c}\)
Convert to dimensions: \[[T] = [L]^a[M]^b[M^{-1}L^3T^{-2}]^c\] \[= [L]^{a+3c}[M]^{b-c}[T]^{-2c}\]
Match exponents:
\[\boxed{P \propto \sqrt{\frac{r^{3}}{GM}}}\]
\[P \propto \sqrt{\frac{r^{3}}{GM}}\]
What it predicts
Given \(r\), \(M\), \(G\), it predicts \(P\).
What it’s saying
“Farther orbits take much longer. More mass makes orbits faster.”
Optional “later this semester” add-on: \[P = 2\pi\sqrt{\frac{r^{3}}{GM}} \quad \text{(exact for circular orbits)}\]
Goal
Use ratios to avoid big-number arithmetic.
For planets orbiting the Sun, Kepler scaling gives: \[\left(\frac{P}{1\,\text{yr}}\right)^2=\left(\frac{a}{1\,\text{AU}}\right)^3\]
Mars has \(a = 1.52\,\text{AU}\).
Hint: \(1.5^3 \approx 3.4\). Then take a square root.
\[\left(\frac{P}{1\,\text{yr}}\right)^2=\left(1.52\right)^3 \approx 3.5 \Rightarrow \frac{P}{1\,\text{yr}} \approx \sqrt{3.5}\approx 1.9\]
\[P_{\text{Mars}} \approx 1.9\,\text{yr}\]
Interpretation (sample): Farther orbits feel weaker gravity and have more distance to travel; the combination produces \(P \propto a^{3/2}\), so period grows quickly with distance.
We want a characteristic radius \(R\) for a black hole (a length scale).
Ingredients:
Goal: \[[R]=[L]\]
Equation meaning (gloss)
Assume: \(R \propto G^{a}M^{b}c^{d}\)
(\(c = 3 \times 10^{8}\,\text{m/s}\), speed of light)
Dimensions: \[[L] = [M^{-1}L^3T^{-2}]^a[M]^b[LT^{-1}]^d\] \[= [L]^{3a+d}[M]^{-a+b}[T]^{-2a-d}\]
Match exponents:
\[\boxed{R \propto \frac{GM}{c^2}}\]
Later-semester “exact” result (Schwarzschild): \(R_s=\frac{2GM}{c^2}\)
\[R_s=\frac{2GM}{c^2}\]
What it predicts
Given \(M\), it predicts the black hole’s horizon size.
What it’s saying
“More mass → bigger region where gravity wins against light.”
Tool 2: The Ratio Method
Escaping the “big number” trap
Mass of the Sun: \(M_\odot = 2 \times 10^{33}\) g Mass of the Earth: \(M_\oplus = 6 \times 10^{27}\) g
Subtraction fails
\[M_\odot - M_\oplus = 1.999... \times 10^{33} \text{ g}\]
Useless. Still a giant, meaningless number.
Division works
\[\frac{M_\odot}{M_\oplus} \approx 333{,}000\]
The Sun is 333,000× more massive than Earth.
Ratios give relative scale. Absolute numbers often don’t.
Most physical laws are proportionality relationships: \[A = kB^n\]
When comparing two systems: \[\frac{A_2}{A_1} = \frac{kB_2^n}{kB_1^n} = \left(\frac{B_2}{B_1}\right)^n\]
The constant \(k\) cancels!
We don’t need to know \(G\), \(\pi\), or \(\sigma\) numerically.
The Sun’s radius is 109 times Earth’s radius: \[\frac{R_\odot}{R_\oplus} = 109\]
Volume of a sphere: \(V = \frac{4}{3}\pi R^3\)
How many Earths fit inside the Sun?
\[\frac{V_\odot}{V_\oplus} = \left(\frac{R_\odot}{R_\oplus}\right)^3 = 109^3 \approx 1.3 \times 10^6\]
Over 1 million Earths!
| Scaling | Physical Meaning | Example |
|---|---|---|
| \(A \propto B^2\) | Area | Surface area, intensity |
| \(A \propto B^3\) | Volume | Mass (if density constant) |
| \(A \propto B^{-2}\) | Inverse-square | Gravity, light intensity |
Small changes in input → big changes in output when \(n > 1\)
If you double a nebula’s radius, by what factor does its surface area increase?
\[SA \propto R^2\] \[\frac{SA_2}{SA_1} = \left(\frac{2R}{R}\right)^2 = 4\]
Factor of 4. (The \(4\pi\) cancels.)
Tool 3: Unit Conversions
Why astronomers use CGS
Numbers in astronomy get… absurd.
Mass of the Sun: \[1{,}989{,}000{,}000{,}000{,}000{,}000{,}000{,}000{,}000{,}000{,}000 \text{ g}\]
Nobody writes that. Instead:
\[M_\odot = 2 \times 10^{33} \text{ g}\]
\[a \times 10^n\]
| Part | What it means |
|---|---|
| \(a\) | Coefficient (1–10) |
| \(10^n\) | “Move decimal \(n\) places” |
| \(n > 0\) | Big number (move right) |
| \(n < 0\) | Small number (move left) |
Example: \(3.0 \times 10^{10}\) = 30,000,000,000 = 30 billion
Multiplication: Add exponents \[10^3 \times 10^5 = 10^{3+5} = 10^8\]
Division: Subtract exponents \[\frac{10^{33}}{10^{27}} = 10^{33-27} = 10^6\]
Powers: Multiply exponents \[(10^3)^2 = 10^{3 \times 2} = 10^6\]
| Prefix | Symbol | Power | Example |
|---|---|---|---|
| tera | T | \(10^{12}\) | THz (infrared) |
| giga | G | \(10^{9}\) | GHz (radio) |
| mega | M | \(10^{6}\) | Mpc (galaxy distances) |
| kilo | k | \(10^{3}\) | km (everyday) |
| centi | c | \(10^{-2}\) | cm (CGS!) |
| milli | m | \(10^{-3}\) | mm (wavelengths) |
| micro | μ | \(10^{-6}\) | μm (infrared) |
| nano | n | \(10^{-9}\) | nm (visible light) |
| Scale | Value | Context |
|---|---|---|
| \(10^{-13}\) cm | Atomic nucleus | Where fusion happens |
| \(10^{-5}\) cm | Wavelength of light | What we detect |
| \(10^{10}\) cm | Solar radius | A typical star |
| \(10^{18}\) cm | 1 parsec | Distance scale |
| \(10^{28}\) cm | Observable universe | Cosmic horizon |
That’s 41 orders of magnitude. Scientific notation isn’t optional—it’s survival.
Astronomy uses CGS (centimeter-gram-second), not SI.
| Base | CGS | SI |
|---|---|---|
| Length | cm | m |
| Mass | g | kg |
| Time | s | s |
Derived units:
SI (Physics textbooks)
\[L_\odot = 3.8 \times 10^{26} \text{ W}\]
CGS (Astrophysics)
\[L_\odot = 3.8 \times 10^{33} \text{ erg/s}\]
Both are correct. CGS is the community standard for astrophysics.
The key insight: \(1 \text{ m} = 100 \text{ cm}\) means:
\[\frac{100 \text{ cm}}{1 \text{ m}} = 1\]
Multiplying by 1 doesn’t change the physics.
It only changes how we write the number.
Goal
Convert units by multiplying by 1 (factor-label method).
Convert \(30\,\mathrm{km/s}\) to \(\mathrm{cm/s}\). Show the chain: \[30\,\frac{\mathrm{km}}{\mathrm{s}} \times\frac{10^3\,\mathrm{m}}{1\,\mathrm{km}} \times\frac{10^2\,\mathrm{cm}}{1\,\mathrm{m}}\]
Convert \(3.8\times 10^{26}\,\mathrm{W}\) to \(\mathrm{erg/s}\).
Given: \(1\,\mathrm{W}=1\,\mathrm{J/s}\), and \(1\,\mathrm{J}=10^7\,\mathrm{erg}\)
\[30\,\frac{\mathrm{km}}{\mathrm{s}} \times\frac{10^3\,\mathrm{m}}{1\,\mathrm{km}} \times\frac{10^2\,\mathrm{cm}}{1\,\mathrm{m}} =30\times 10^5\,\frac{\mathrm{cm}}{\mathrm{s}} =3\times 10^6\,\mathrm{cm/s}\]
\[3.8\times 10^{26}\,\mathrm{W} =3.8\times 10^{26}\,\mathrm{J/s} =3.8\times 10^{26}\times 10^7\,\mathrm{erg/s} =3.8\times 10^{33}\,\mathrm{erg/s}\]
How many erg in 1 Joule?
\[1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}\]
\[= (10^3 \text{ g})(10^2 \text{ cm})^2 \text{ s}^{-2}\]
\[= 10^3 \times 10^4 \text{ g cm}^2 \text{ s}^{-2} = 10^7 \text{ erg}\]
SI: \(\sigma = 5.67 \times 10^{-8}\) W m\(^{-2}\) K\(^{-4}\)
Convert to CGS:
\[\sigma = 5.67 \times 10^{-8} \times 10^7 \times 10^{-4} = 5.67 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ K}^{-4}\]
| Quantity | CGS Value |
|---|---|
| 1 parsec | \(3.09 \times 10^{18}\) cm |
| 1 AU | \(1.50 \times 10^{13}\) cm |
| Solar mass \(M_\odot\) | \(2.0 \times 10^{33}\) g |
| Solar radius \(R_\odot\) | \(7.0 \times 10^{10}\) cm |
| Solar luminosity \(L_\odot\) | \(3.8 \times 10^{33}\) erg/s |
Tool 4: Order-of-Magnitude
The power of being “roughly right”
“Can I drive there before dinner?”
You estimate:
No calculator needed. Good enough.
Numbers span 40+ orders of magnitude:
Exact precision can hide the physics.
If you’re off by a factor of 2, that’s a triumph.
If you’re off by \(10^{10}\), something’s wrong.
When estimating:
Example:
Area Code (555): Three steps DOWN from human scale
Exchange (711): Solar system
Subscriber (2555): Cosmos
If your calculation gives stellar distance = \(10^{11}\) cm…
That’s Sun-sized, not star-distance. Red flag!
How many piano tuners work in Chicago?
\[\frac{10^6 \times 10^{-1} \times 1}{10^3} = 10^2 \approx 100\text{–}300 \text{ tuners}\]
Goal
Use a known anchor + scaling to stay in the right powers-of-ten “zip code.”
Assume:
Since \(R_s \propto M\):
10 \(M_\odot\): \[R_s \approx 3\,\mathrm{km}\times 10 \approx 30\,\mathrm{km}\]
\(4\times 10^6\,M_\odot\): \[R_s \approx 3\,\mathrm{km}\times 4\times 10^6 \approx 1.2\times 10^7\,\mathrm{km}\]
Comparison: \[1.2\times 10^7\,\mathrm{km}\] is bigger than Sun-scale (\(\sim 10^6\) km) and smaller than AU-scale (\(\sim 10^8\) km) — closer to AU than to the Sun, but still within an order of magnitude of “solar system” scales.
Where did \(R_s \approx 3\) km come from? Use \(R_s \approx \frac{GM}{c^2}\)
CGS values:
Substitute: \[R_s \approx \frac{10^{-7} \cdot 10^{33}}{(10^{10})^2}\,\frac{\text{cm}^3 \cdot \cancel{\text{g}} \cdot \cancel{\text{s}^{2}}}{\cancel{\text{g}} \cdot \cancel{\text{s}^{2}} \cdot \text{cm}^2}\]
\[= \frac{10^{26}}{10^{20}}\,\text{cm} = 10^{6}\,\text{cm} = 10\,\text{km}\]
Exact: 3 km. Factor of 3 off — OOM success!
Connecting the Toolkit
flowchart LR
A[Question] --> B[Dimensional Analysis]
B -->|Valid?| C[Ratio Method]
C -->|Compare| D[Unit Conversion]
D -->|Calculate| E[OOM Check]
E -->|Sensible?| F[Answer]
Use all four tools together for robust reasoning.
| Tool | Question It Answers |
|---|---|
| Dimensional Analysis | Is this equation physically valid? |
| Ratio Method | How does this compare to something known? |
| Unit Conversions | What’s the numeric value in CGS? |
| OOM Estimation | Does this answer make sense? |
These tools are your scientific radar for the rest of the course.
One Thing to Remember
If you forget everything else from today, remember this:
Dimensions are your smoke detector.
Before trusting any equation, check that both sides have the same dimensions.
If they don’t match, the physics is guaranteed to be wrong.
Common questions at this point:
Solutions Reference
Detailed step-by-step solutions for self-study
Setup
Given: Four candidate formulas for orbital period \(P\)
Find: Which have dimensions of time \([T]\)
Key fact: \([G] = [M^{-1}L^3T^{-2}]\), so \([GM] = [L^3T^{-2}]\)
Option 1: \(P \propto \dfrac{r^2}{GM}\)
\[\left[\frac{r^2}{GM}\right] = \frac{[L]^2}{[L^3T^{-2}]} = \frac{[L^2]}{[L^3][T^{-2}]} = [L^{2-3}][T^{+2}] = [L^{-1}T^2]\]
\[\boxed{\text{Not } [T] \text{ — WRONG}}\]
Option 2: \(P \propto \sqrt{\dfrac{r^3}{GM}}\)
\[\left[\sqrt{\frac{r^3}{GM}}\right] = \sqrt{\frac{[L^3]}{[L^3T^{-2}]}} = \sqrt{\frac{[L^3]}{[L^3]}\cdot[T^2]} = \sqrt{[T^2]} = [T] \quad \boxed{\checkmark \text{ CORRECT}}\]
Option 3: \(P \propto \dfrac{r}{\sqrt{GM}}\)
\[\left[\frac{r}{\sqrt{GM}}\right] = \frac{[L]}{\sqrt{[L^3T^{-2}]}} = \frac{[L]}{[L^{3/2}T^{-1}]} = [L^{1-3/2}][T^1] = [L^{-1/2}T] \quad \boxed{\text{WRONG}}\]
Option 4: \(P \propto \sqrt{\dfrac{GM}{r^3}}\)
\[\left[\sqrt{\frac{GM}{r^3}}\right] = \sqrt{\frac{[L^3T^{-2}]}{[L^3]}} = \sqrt{[T^{-2}]} = [T^{-1}] \quad \boxed{\text{WRONG (frequency, not period)}}\]
Setup
Given: Mars orbital distance \(a = 1.52\) AU Find: Mars orbital period \(P\) in years Formula: \(\left(\dfrac{P}{1\,\text{yr}}\right)^2 = \left(\dfrac{a}{1\,\text{AU}}\right)^3\) (Kepler’s Third Law)
Step 1: Substitute known value \[\left(\frac{P}{1\,\text{yr}}\right)^2 = (1.52)^3\]
Step 2: Evaluate the cube (show your work!) \[1.52^3 = 1.52 \times 1.52 \times 1.52 = 2.31 \times 1.52 \approx 3.51\]
Step 3: Take square root of both sides \[\frac{P}{1\,\text{yr}} = \sqrt{3.51} \approx 1.87\]
Step 4: Solve for \(P\) \[\boxed{P_{\text{Mars}} \approx 1.9 \text{ years}}\]
Actual value: 1.88 years — excellent agreement!
Physical interpretation:
A planet farther from the Sun experiences two effects:
Combined effect: \(P \propto a^{3/2}\) — period grows faster than linearly with distance.
Sanity check
Setup
Given: Earth’s orbital speed = \(30\) km/s Find: Speed in cm/s (CGS) Method: Multiply by conversion factors = 1
Step 1: Write conversion factors \[1\,\text{km} = 10^3\,\text{m} \quad \Rightarrow \quad \frac{10^3\,\text{m}}{1\,\text{km}} = 1\] \[1\,\text{m} = 10^2\,\text{cm} \quad \Rightarrow \quad \frac{10^2\,\text{cm}}{1\,\text{m}} = 1\]
Step 2: Chain the conversions (watch units cancel!) \[30\,\frac{\cancel{\text{km}}}{\text{s}} \times \frac{10^3\,\cancel{\text{m}}}{1\,\cancel{\text{km}}} \times \frac{10^2\,\text{cm}}{1\,\cancel{\text{m}}} = 30 \times 10^3 \times 10^2 \,\frac{\text{cm}}{\text{s}}\]
Step 3: Combine powers of 10 \[= 30 \times 10^{3+2}\,\text{cm/s} = 30 \times 10^5\,\text{cm/s} = \boxed{3 \times 10^6\,\text{cm/s}}\]
Setup
Given: \(L_\odot = 3.8 \times 10^{26}\) W (SI) Find: \(L_\odot\) in erg/s (CGS) Key conversion: \(1\,\text{W} = 1\,\text{J/s}\) and \(1\,\text{J} = 10^7\,\text{erg}\)
Step 1: Expand Watts to fundamental units \[3.8 \times 10^{26}\,\text{W} = 3.8 \times 10^{26}\,\frac{\text{J}}{\text{s}}\]
Step 2: Convert Joules to ergs \[= 3.8 \times 10^{26}\,\frac{\cancel{\text{J}}}{\text{s}} \times \frac{10^7\,\text{erg}}{1\,\cancel{\text{J}}}\]
Step 3: Combine powers of 10 \[= 3.8 \times 10^{26} \times 10^7\,\frac{\text{erg}}{\text{s}} = 3.8 \times 10^{26+7}\,\text{erg/s}\]
\[\boxed{L_\odot = 3.8 \times 10^{33}\,\text{erg/s}}\]
Common error: Forgetting that 1 J = \(10^7\) erg (not \(10^3\)!). Energy in CGS uses small units.
Setup
Given: \(R_s(1\,M_\odot) \approx 3\) km (anchor value) Scaling law: \(R_s \propto M\) (linear) Find: \(R_s\) for 10 \(M_\odot\) and \(4 \times 10^6\,M_\odot\)
Part 1: Stellar-mass black hole (10 \(M_\odot\)) \[\frac{R_s(10\,M_\odot)}{R_s(1\,M_\odot)} = \frac{10\,M_\odot}{1\,M_\odot} = 10\]
\[R_s(10\,M_\odot) = 10 \times 3\,\text{km} = \boxed{30\,\text{km}}\]
Part 2: Supermassive black hole (\(4 \times 10^6\,M_\odot\), like Sgr A*) \[\frac{R_s(4\times10^6\,M_\odot)}{R_s(1\,M_\odot)} = \frac{4\times10^6\,M_\odot}{1\,M_\odot} = 4\times10^6\]
\[R_s = (4\times10^6) \times 3\,\text{km} = 12\times10^6\,\text{km} = \boxed{1.2\times10^7\,\text{km}}\]
Part 3: How big is \(1.2 \times 10^7\) km?
| Object | Size |
|---|---|
| Earth radius | \(6.4 \times 10^3\) km |
| Sun radius | \(7 \times 10^5\) km |
| Sgr A* horizon | \(1.2 \times 10^7\) km |
| Mercury’s orbit | \(5.8 \times 10^7\) km |
| 1 AU | \(1.5 \times 10^8\) km |
\[\boxed{\text{Sgr A* is about 17× the Sun's radius, or } \sim 0.08 \text{ AU}}\]
Sanity check
The Template
Every solution should follow this structure:
Common pitfalls
See the Lecture 2 Reference Handout for:

ASTR 201 • Lecture 2