What to notice 2 bullets
  • Both bodies move; the heavier one moves less, but it doesn’t stay perfectly fixed.
  • Changing separation affects the period strongly (in this simplified circular model).
Model notes $\mathrm{AU}$ / $\mathrm{yr}$ / $M_{\odot}$
  • We assume perfectly circular orbits and point masses (no size, no tides, no relativity).
  • Units: distance in $\mathrm{AU}$, time in $\mathrm{yr}$, and masses in $M_{\odot}$. We use the teaching normalization $$G = 4\pi^2\,\frac{\mathrm{AU}^3}{\mathrm{yr}^2\,M_{\odot}}.$$ In this instrument we take $m_1 = 1\,M_{\odot}$ and set $m_2$ via the mass-ratio slider, so $$P^2 = \frac{a^3}{M_1 + M_2}$$ in this circular Keplerian model.
  • This is a visualization aid, not a full N-body integrator or a measured astrophysical binary.