$T_{\rm eff}\;[\mathrm{K}]$

$L/L_{\odot}$

Both axes use base-10 logarithmic scaling with real numeric values; hotter stars are on the left.

What to notice 3 prompts
  • Increasing mass usually pushes stars toward hotter and more luminous parts of the ZAMS track.
  • Changing metallicity shifts $L$, $R$, and $T_{\rm eff}$ even at fixed mass.
  • Stefan mode isolates radius and temperature effects; ZAMS mode constrains stars to Tout-1996 fits.
Model notes Tout 1996 + units
  • ZAMS relations use Tout et al. (1996) analytic fits for $L(M,Z)$ and $R(M,Z)$.
  • Validity range: $0.1\le M/M_{\odot}\le100$ and $10^{-4}\le Z\le0.03$.
  • H-R axes are logarithmic: $T_{\rm eff}$ axis in K and $L/L_{\odot}$ axis in powers of ten.
  • Effective temperature closure: $$T_{\rm eff}=T_{\odot}\left[(L/L_{\odot})/(R/R_{\odot})^2\right]^{1/4}$$