$T_{\rm eff}\;[\mathrm{K}]$
$L/L_{\odot}$
Both axes use base-10 logarithmic scaling with real numeric values; hotter stars are on the left.
The H-R diagram maps thermal state ($T_{\rm eff}$) against total luminosity ($L$). This demo uses log-log axes because stars span many orders of magnitude in both quantities.
Use these as linked, not interchangeable, statements:
$$F=\sigma T^4$$
$$L=4\pi R^2\sigma T^4$$
$$\frac{L}{L_{\odot}}=\left(\frac{R}{R_{\odot}}\right)^2\left(\frac{T_{\rm eff}}{T_{\odot}}\right)^4$$
Turning on constant-$R$ guides shows families of stars with the same radius. This makes the geometric factor in $L=4\pi R^2\sigma T^4$ visible directly on the plot.